

The team's project focuses on optimizing semantic segmentation algorithms for
eye tracking in assistive technology applications. Rather than splitting the algorithm,
which would increase overhead cost and slow down overall system speed, we propose an
efficient resource scheduling approach that ensures all algorithms receive fair access to the
DPU. Our approach aims to improve processing from 160 ms per frame to approximately
33.2ms per frame for 4 frames simultaneously*, while maintaining our required 99.8% IoU
accuracy. This optimization ensures that Algorithms 1, 2, and 3 can collect their required
periodic data without being starved by the semantic segmentation algorithm, which is
critical for real-time eye tracking in medical assistance devices for individuals with
disabilities, particularly those with conditions like cerebral palsy.

The team's key design requirements include maintaining 99.8% IoU accuracy while
achieving the target processing speed of 60 frames per second. The approach leverages
parallelism on the AMD Kria KV260 development board, utilizing its multi-core
architecture and Deep Processing Unit (DPU) for neural network inference. The design
employs resource scheduling strategies, memory management techniques, and
deadline-aware prioritization to optimize resource utilization.

Progress to date includes establishing the development environment, testing the
existing eye tracking algorithm, and developing a scheduling approach. Initial results show
the feasibility of achieving the required performance improvements, with current accuracy
at 98.8%, within the team's target range. The team's next steps focus on developing the
resource management system and optimizing data flow between processing units.

The design effectively addresses user needs by improving response time for
assistive devices, enabling more natural and responsive eye-tracking control for users with
mobility impairments. This enhanced performance will significantly improve safety and
quality of life for users, allowing the system to detect and respond to potential medical
issues faster and more reliably.

*Note: These numerical examples are representative placeholders to illustrate the design
challenge and protect NDA-covered information.

Learning Summary

Development Standards & Practices Used
●​ ONNX (Open Neural Network Exchange) for neural network model representation
●​ Multithreaded programming using C++ and POSIX threads
●​ Memory management and thread synchronization techniques
●​ Docker containerization for development and deployment
●​ Version control using Git/GitHub
●​ IEEE 3129-2023 for AI-based image recognition testing and evaluation
●​ IEEE 2802-2022 for AI-based medical device performance evaluation
●​ IEEE 7002-2022 for data privacy processes
●​ Vitis-AI and ONNX-Runtime for model optimization and deployment

Summary of Requirements

●​ Divide U-Net semantic segmentation algorithm into four equal parts for parallel
processing.

●​ Implement a pipelined architecture for concurrent execution across multiple cores
●​ Achieve system throughput of less than 33.2 ms per frame when processing four

frames
●​ Maintain algorithm accuracy of 99.8% IoU after optimization and parallelization
●​ Optimize memory and FPGA resource usage for efficient parallel execution
●​ Implement robust error handling for pipeline management
●​ Ensure compatibility with Xilinx Kria KV260 hardware platform
●​ Develop efficient DPU resource sharing between algorithm components
●​ Create thread management system for synchronization and communication
●​ Maintain data consistency and integrity throughout the pipeline

Applicable Courses from Iowa State University Curriculum
CprE 488: Embedded Systems Design

CprE 489: Computer Networking and Data Communications

ComS 511: Design and Analysis of Algorithms

ComS 572: Principles of Artificial Intelligence

ComS 474/574: Intro to Machine Learning

Math 407: Applied Linear Algebra

ComS 510: Distributed Development of Software

EE 524: Digital Signal Processing

CprE 585: Developmental Robotics

New Skills/Knowledge acquired that was not taught in courses
●​ Semantic segmentation techniques using U-Net architecture
●​ FPGA programming using Vitis-AI for deep learning applications
●​ Memory allocation strategies for multi-core embedded systems
●​ Optimization techniques for neural networks on resource-constrained hardware
●​ Real-time constraints handling in eye-tracking applications
●​ Algorithmic division for parallel processing while maintaining mathematical

consistency
●​ DPU resource scheduling and optimization
●​ Docker container optimization for embedded deployments
●​ Onnx Runtime

Table of Contents

1. Introduction.. 9
1.1. Problem Statement... 9
1.2. Intended Users... 9
Primary Clients...9
Client 2: Caregivers and Family Members.. 9
Client 3: The Tertiary User Group..10

2. Requirements, Constraints, And Standards... 10
2.1. Requirements & Constraints.. 10

Functional Requirements.. 10
User Interface (UI) Requirements...11
Physical and Economic Requirements... 11
System Constraints...11
Additional Considerations.. 12
2.2 Engineering Standards.. 12

3 Project Plan... 13
3.1 Project Management/Tracking Procedures.. 13

3.2 Task Decomposition.. 14
Task 2: Implementation of Core Components... 14
Task 3: Thread Management..15
Task 4: Multicore Processing... 15
Task 5: Integration and Testing... 15
Task 6: Documentation and Delivery... 15

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria... 15
Milestone 1: Mathematical Division of the Algorithm...15
Milestone 3: Thread Testing with Matrix Operations... 16
Milestone 4: Docker Environment Configuration... 16
Milestone 5: Pipelined Implementation of Semantic Segmentation....................................... 16
Milestone 6: Increased Throughput Demonstration...16

3.4 Project Timeline/Schedule... 16
3.5 Risks and Risk Management/Mitigation..17

Risk 1: Completion Delays..17
Risk 2: Hardware Damage.. 17
Risk 3: Data Security...17
Risk 4: Algorithm Complexity... 18
Risk 5: Parallelism Implementation Challenges.. 18
Risk 6: Image Processing Speed Limitations..18

3.6 Personnel Effort Requirements.. 18
3.7 Other Resource Requirements...20

Hardware Resources.. 20
Software Resources..20
Development Tools..20
Data Resources...20

4.1 Design Context...21
4.1.1 Broader Context.. 21
4.1.2 Prior Work/Solutions...21
4.1.3 Technical Complexity.. 22

4.2 Design Exploration... 23
4.2.1 Design Decisions... 23
4.2.2 Ideation..23
4.2.3 Decision-Making and Trade-Off..24

4.3 Proposed Design... 25
4.3.1 Overview..25
4.3.2 Detailed Design and Visual(s).. 26

Hardware Platform.. 26
Software Components... 26
Processing Pipeline..27
Memory Allocation..27

4.3.3 Functionality.. 27
Initial Setup:...28
Normal Operation:.. 28
Response to Detected Issues:..28
User Control Mode:... 28

4.3.4 Areas of Concern and Development.. 28
4.4 Technology Considerations... 29

Kria Board KV260.. 29
U-net Semantic Segmentation Algorithm... 30
Vitis-AI and ONNX-Runtime... 30
Alternative Technologies Considered... 31

4.5 Design Analysis..31
Current Implementation Status:... 31
Implementation Challenges:...32
Future Implementation Plans:..32

5 Testing.. 33
Testing Strategy Overview..33

Testing Philosophy...33
Testing Challenges... 33
Testing Schedule.. 33

5.1 Unit Testing.. 33
Feature Map Testing.. 33
Algorithm Testing..34
Thread Testing... 34
Success Goals... 34

5.2 Interface Testing..34
Key Interfaces...34
Test Cases... 34

5.3 System Testing... 35
Test Plan... 35
Test Measurements.. 35

5.4 Regression Testing.. 35
Automated Testing...35
Monitoring... 36
Test Schedule... 36

5.5 Acceptance Testing... 36
Function Tests..36
Other Requirements..36
Client Involvement.. 37

5.6 User Testing...37
Proposed Future User Testing Plan.. 37

System Preparation for Future Testing...37
5.7 Results..38

Current Progress.. 38
Next Steps...38

6 Implementation.. 39
Resource Scheduling Implementation...39
Thread Coordination Implementation.. 39
DPU Scheduler Implementation.. 39
Current Status..39
Next Implementation Steps..40

7 Ethics and Professional Responsibility.. 40
7.1 Areas of Professional Responsibility/Codes of Ethics... 41
7.2 Four Principles.. 43
7.3 Virtues..45

Individual Virtues..46
8 Closing Material.. 47

8.1 Conclusion... 47
8.2 References... 47
8.3 Appendices..48

Appendix A: Detailed Algorithm Division Technical Specifications....................................... 48
Appendix B: Thread Management Implementation Details..48
Appendix C: Test Data Sets and Validation Results..49
Appendix D: Memory Utilization Analysis..49
Appendix E: User Calibration Procedure...49

9 Team... 49
9.1 Team Members..49
9.2 Required Skill Sets for Your Project.. 49
9.3 Skill Sets covered by the Team...50
9.4 Project Management Style Adopted by the team.. 50
9.5 Initial Project Management Roles... 50

9.6 Team Contract.. 51
Team Procedures... 51
Participation Expectations..51
Leadership...52
Collaboration and Inclusion.. 52
Goal-Setting, Planning, and Execution... 52
Consequences for Not Adhering to Team Contract... 53

​

List of figures

Project Design:

Figure: Diagram shows at a high-level how the teamplan to sequence access to the math accelerator
available on the Kria board.

Multilevel Image Processing Diagram

Figure: This diagram shows how the program starts and manages the threads as main is started. It
clearly indicates the Frame loader, Frame Feeder, the Frame Queues that hold the next image as
processing is being run, and each individual thread along with the entire process that is worked on
the images fed into them.

Timing Diagram of Algorithm

Figure: Current version is using a simple First come first serve schedule. The team's team is splitting
up the algorithm using a Round Robin schedule. This will help create a smooth process within the
system.

1. Introduction

1.1.​ PROBLEM STATEMENT

Handicapped individuals with underlying conditions face the critical challenge of detecting and
responding to medical episodes before they occur, which can happen anytime and anywhere,
posing significant risks to their safety and independence. In a broader societal context,
individuals with disabilities often encounter inadequate assistive technologies that fail to
proactively ensure their well-being. Current healthcare solutions are reactive, requiring human
intervention after an episode occurs, which can lead to delayed response times, severe medical
complications, and loss of autonomy.

This issue is particularly significant as advancements in artificial intelligence and edge
computing offer new opportunities for real-time health monitoring. However, these
technologies remain underutilized in the field of assistive mobility devices. The ability to
predict and respond to medical emergencies in real time would not only enhance personal
safety but also reduce the burden on caregivers and emergency medical services, improving
overall healthcare efficiency.

To address this problem, the team's project focuses on leveraging semantic segmentation at the
edge to analyze physiological indicators such as eye movement and body posture. By
integrating this technology into wheelchairs, the team aims to create an intelligent system that
detects early warning signs of medical distress and autonomously moves the user to a safer
position before a critical incident occurs. This approach bridges the gap between existing
assistive technologies and the urgent need for proactive, real-time health monitoring,
ultimately empowering handicapped individuals to navigate their daily lives with greater
security and independence.

1.2.​INTENDED USERS

PRIMARY CLIENTS

The primary clients of this product are individuals with mobility impairments, many of whom have
underlying physiological conditions such as Cerebral Palsy, epilepsy, or cardiovascular disorders.
These individuals depend on wheelchairs for mobility and face heightened risks associated with
sudden medical episodes. They require a proactive safety system that detects early signs of medical
distress and responds autonomously to relocate them to a safe position.

Maintaining independence is a critical priority for these individuals, as many wish to lead active
lives without constant supervision. By integrating real-time monitoring and intervention features,
this product empowers users by providing an added layer of security without compromising their
autonomy. The benefits of such a system include a significant reduction in medical emergencies,
increased confidence in navigating daily life, and an overall improved quality of life.

CLIENT 2: CAREGIVERS AND FAMILY MEMBERS

Caregivers and family members form the secondary user group, as they play an essential role in
ensuring the well-being of individuals with mobility impairments. Parents, guardians, and
professional caregivers are often burdened with the responsibility of constant monitoring, which
can be both emotionally and physically demanding. They need a reliable alert system that provides
real-time updates on the user's condition, allowing them to respond appropriately without intrusive
supervision.

This product alleviates some of the stress associated with caregiving by offering automated alerts
and health tracking, enabling caregivers to provide support when necessary while also granting
users greater independence. The ability to receive timely notifications about potential medical
issues enhances caregivers' ability to act swiftly and effectively, fostering a more sustainable care
model.

CLIENT 3: THE TERTIARY USER GROUP

The tertiary user group consists of healthcare providers and emergency responders, including
medical professionals, therapists, and paramedics who are responsible for diagnosing, treating, and
responding to medical emergencies among mobility-impaired individuals. These professionals rely
on accurate, real-time health data to assess risks and make informed decisions.

An automated system capable of detecting early warning signs of medical distress and transmitting
alerts to healthcare providers can significantly improve response times and patient outcomes.
Additionally, the ability to integrate this data with existing healthcare monitoring systems enhances
the efficiency of medical intervention. By bridging the gap between assistive mobility technology
and healthcare services, this project contributes to a more data-driven approach to patient care,
ultimately improving medical decision-making and emergency response capabilities.

Each of these user groups plays a critical role in the success and impact of this project. By
addressing the needs of handicapped individuals, caregivers, and healthcare professionals, this
product aims to create a safer, more autonomous, and more efficient system for managing mobility
and health-related challenges. The integration of real-time monitoring and autonomous
intervention not only enhances the quality of life for individuals with disabilities but also eases the
burden on caregivers and improves medical response strategies. In doing so, this project contributes
to a broader movement toward proactive, technology-driven healthcare solutions that prioritize
safety, independence, and well-being.

2.​ Requirements, Constraints, And Standards

2.1.​REQUIREMENTS & CONSTRAINTS

Functional Requirements

1.​ Algorithm Splitting and Pipelining:
○​ Split the U-Net semantic segmentation algorithm into four equal parts to enable

parallel processing across multiple cores.

○​ Implement a pipelined architecture to allow concurrent execution of the split
U-Net segments and other algorithms (e.g., image preprocessing, blink detection,
eye tracking).

○​ Ensure the pipeline maintains data consistency and synchronization between
stages.

2.​ System Throughput:
○​ Achieve a system throughput of less than 33.2 ms per frame when processing four

frames concurrently.
○​ Ensure real-time processing capabilities are maintained for the assistive wheelchair

application.
3.​ Resource Efficiency:

○​ Optimize memory and FPGA resource usage to accommodate the additional
overhead of pipelining and parallel execution.

○​ Ensure efficient sharing of the DPU between the split U-Net segments and other
algorithms.

4.​ Error Handling in Pipeline:
○​ Implement robust error handling mechanisms to detect and recover from pipeline

stalls, frame drops, or data corruption.

USER INTERFACE (UI) REQUIREMENTS

1.​ Command Line Interface (CLI):
○​ Retain the existing user-friendly CLI for both technical and non-technical users.
○​ Add new commands to allow users to:

1.​ Configure pipeline settings (e.g., number of threads, buffer sizes).
2.​ Monitor pipeline performance (e.g., throughput, latency, resource usage).

○​ Include help commands to describe new pipeline-related functionalities.
2.​ Command Feedback:

○​ Provide real-time feedback on pipeline performance, including throughput,
latency, and error rates.

○​ Display warnings or errors if the pipeline encounters issues (e.g., buffer overflow,
frame drops).

3.​ Error Handling and Logging:
○​ Enhance error logging to include pipeline-specific issues (e.g., stage delays,

synchronization errors).
○​ Provide detailed logs to assist users in debugging pipeline performance and

resource allocation.

PHYSICAL AND ECONOMIC REQUIREMENTS

1.​ Hardware Compatibility:
○​ Ensure that the pipelined architecture remains compatible with the Xilinx Kria

Kv260 board.
○​ Minimize additional hardware requirements to keep costs low.

2.​ Cost-Effectiveness:

○​ Design the pipeline to maximize throughput without requiring significant
hardware upgrades.

○​ Ensure that future maintenance and updates remain economical.

SYSTEM CONSTRAINTS

1.​ Memory Limitations:
○​ The Xilinx Kria K26 board has 4GB of DDR memory, which must be shared among

the pipeline stages.
○​ Optimize memory usage to avoid contention between stages and ensure smooth

data flow.
2.​ FPGA Resource Allocation:

○​ The available FPGA resources are limited and must be efficiently allocated to
accommodate the additional logic required for pipelining.

○​ Ensure that the Deep Learning Processing Unit (DPU) is shared effectively between
blink detection and eye-tracking submodules.

3.​ DPU Utilization:
○​ Develop a scheduling strategy to allow the DPU to be shared between blink

detection and eye-tracking submodules without causing bottlenecks.

ADDITIONAL CONSIDERATIONS

1.​ Deployment Options:
○​ The system will continue to be deployed on the Xilinx Kria Kv260 board, with no

immediate plans for expansion to other platforms.
○​ Ensure that the pipelined architecture is portable and can be adapted to future

hardware upgrades if needed.
2.​ Data Handling and Privacy:

○​ Maintain strict data privacy and security measures, especially when handling
sensitive user data in the pipeline.

○​ Ensure that intermediate data between pipeline stages is securely managed and not
exposed to unauthorized access.

3.​ Scalability:
○​ Design the pipeline to be scalable, allowing for the addition of new algorithms or

submodules in the future.
○​ Ensure that the architecture can handle increased workloads (e.g., higher frame

rates or additional features) without significant rework.

2.2 ENGINEERING STANDARDS

IEEE 2952-2023 - IEEE Standard for Secure Computing Based on Trusted Execution Environment

●​ Trusted Execution Environments (TEEs) are used to protect sensitive data and
computations. This standard ensures that systems using TEEs follow security best practices,
reducing the risk of unauthorized access or tampering.

IEEE 2802-2022 - IEEE Standard for Performance and Safety Evaluation of AI-Based Medical
Devices: Terminology

●​ This standard provides clear terms and definitions for evaluating the performance and
safety of AI-based medical devices. It helps ensure these devices are reliable and effective in
real-world medical settings.

IEEE 7002-2022 - IEEE Standard for Data Privacy Process

●​ This standard outlines best practices for protecting user data and ensuring privacy. It helps
organizations comply with regulations and build trust with users when handling sensitive
information.

IEEE 3129-2023 - IEEE Standard for Robustness Testing and Evaluation of AI-Based Image
Recognition Services

●​ This standard provides guidelines for testing AI-based image recognition systems to ensure
they work reliably under different conditions. It helps identify and fix issues that could
arise from unexpected inputs or scenarios.

IEEE 3156-2023 - IEEE Standard for Requirements of Privacy-Preserving Computation Integrated
Platforms

●​ Privacy-preserving computation allows data to be processed without exposing sensitive
information. This standard defines the requirements for platforms that support such
computations, ensuring they protect user privacy.

IEEE 2842-2021 - IEEE Recommended Practice for Secure Multi-Party Computation

●​ Secure multi-party computation lets multiple parties work together on shared data without
revealing their individual inputs. This standard provides guidance for implementing these
protocols, making collaborative computing safer for sensitive applications like healthcare
and finance.

IEEE 1484.1-2003 - IEEE Standard for Learning Technology - Learning Technology Systems
Architecture (LTSA)

●​ This standard defines a framework for designing and integrating educational software and
systems. It ensures that learning technologies can work together seamlessly, supporting
innovation in online education.

3 Project Plan

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

The team's team has adopted a hybrid Waterfall + Agile project management approach for this
project. This methodology provides us with both the structured framework of Waterfall for critical

path activities and the flexibility of Agile for iterative development and testing. This hybrid
approach is particularly well-suited for the team's project because:

1.​ The semantic segmentation optimization has clearly defined phases (mathematical
division, implementation, testing) that benefit from Waterfall planning

2.​ The technical nature of implementing parallelism and optimizing algorithms requires
adaptive iterations that benefit from Agile sprints

Working with specialized hardware (Kria Board Kv260) requires careful planning of resource
allocation and access

For project tracking, the team will utilize the following tools:

●​ GitHub: Primary code repository for version control, documentation, and collaboration.
The team's client also has access to this repository to track progress in real-time.

●​ Telegram: Main communication channel with the team's client and previous years' team
members for quick updates and questions.

●​ Discord: Team communication for internal discussions and virtual meetings.

Weekly team meetings will be held to review sprint progress, address blockers, and plan upcoming
work. Monthly meetings with the client will ensure alignment with project goals and requirements.

3.2 TASK DECOMPOSITION

The team's project involves optimizing the semantic segmentation U-Net algorithm by
implementing parallelism across multiple cores and the MPU. The key objective is to increase
throughput from 160 ms per frame to 33.2ms across 4 frames. The following tasks and subtasks have
been identified:

Task 1: Mathematical Division of the Algorithm

●​ Subtask 1.1: Analyze current U-Net architecture to identify parallelizable components
●​ Subtask 1.2: Divide the algorithm into 4 equal segments to maintain accuracy
●​ Subtask 1.3: Document proposed mathematical divisions and validate approach

Task 2: Implementation of Core Components

●​ Subtask 2.1: Implement image pre-processing using semantic segmentation
●​ Subtask 2.2: Implement eye tracking algorithm with pre-processed images
●​ Subtask 2.3: Implement blink detection algorithm
●​ Subtask 2.4: Implement DPU sharing mechanism for resource optimization

Task 3: Thread Management

●​ Subtask 3.1: Implement memory sharing between threads (non-DDR)
●​ Subtask 3.2: Configure thread allocation to specific memory locations
●​ Subtask 3.3: Implement thread synchronization and communication
●​ Subtask 3.4: Test thread operation with matrix operations

Task 4: Multicore Processing

●​ Subtask 4.1: Configure Docker environment for efficiency
●​ Subtask 4.2: Develop multi core loading method for split ONNX model
●​ Subtask 4.3: Implement pipelined passing of data through threads
●​ Subtask 4.4: Optimize data flow between processing units

Task 5: Integration and Testing

●​ Subtask 5.1: Integrate all components into a unified system
●​ Subtask 5.2: Benchmark performance against target metrics
●​ Subtask 5.3: Identify and resolve bottlenecks
●​ Subtask 5.4: Validate accuracy of results and compare to baseline system

Task 6: Documentation and Delivery

●​ Subtask 6.1: Document implementation details and architecture
●​ Subtask 6.2: Prepare user guides and technical documentation
●​ Subtask 6.3: Develop demonstration materials
●​ Subtask 6.4: Prepare final project presentation

These tasks will be further broken down into sprint activities with specific team members assigned
based on their expertise, as outlined in the personnel effort requirements section.

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

The following key milestones have been identified for the project, along with their associated
metrics and evaluation criteria:

Milestone 1: Mathematical Division of the Algorithm

●​ Completion Date: Week 8

●​ Metrics: Validated mathematical approach for dividing U-Net algorithm
●​ Evaluation Criteria: Division maintains output accuracy equivalent to original algorithm

Milestone 2: Loading of Split Algorithm Weights onto MPU

●​ Completion Date: Week 12
●​ Metrics: Successful loading of model segments into appropriate memory locations
●​ Evaluation Criteria: Each model segment loads correctly with optimal memory utilization

(<90% of allocated memory)

Milestone 3: Thread Testing with Matrix Operations

●​ Completion Date: Week 16
●​ Metrics: Successful parallel operation of multiple threads
●​ Evaluation Criteria: All threads operate concurrently without memory conflicts

Milestone 4: Docker Environment Configuration

●​ Completion Date: Week 16
●​ Metrics: Streamlined processing environment
●​ Evaluation Criteria: Environment supports all required libraries and tools with minimal

overhead

Milestone 5: Pipelined Implementation of Semantic Segmentation

●​ Completion Date: Week 16
●​ Metrics: Functional parallelized semantic segmentation algorithm
●​ Evaluation Criteria: Algorithm processes multiple frames concurrently with accuracy equal

to or greater than original implementation (99.8% accuracy)

Milestone 6: Increased Throughput Demonstration

●​ Completion Date: Week 16
●​ Metrics: Processing speed of multiple frames
●​ Evaluation Criteria: Achieve target throughput of 33.2ms for 4 frames (vs. current 160ms for

1 frame)

For each milestone, the teamwill track progress using the following quantifiable metrics:

●​ Processing time: Measured in milliseconds per frame
●​ Accuracy: Comparison of segmentation results with ground truth data
●​ Resource utilization: CPU, memory, and DPU usage percentages
●​ Throughput: Frames processed per second

3.4 PROJECT TIMELINE/SCHEDULE

The project will span approximately 16 weeks, with work organized into sprints. The Gantt chart
shows the major tasks and their estimated durations.

Key deliverable dates:

●​ Week 8: Mathematical division proposal document
●​ Week 12: Thread testing results and documentation
●​ Week 16: Preliminary performance report

The critical path for this project follows the mathematical division of the algorithm,
implementation of the eye-tracking components, integration of the parallelization framework, and
final optimization of throughput.

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

Risk 1: Completion Delays

●​ Probability: 10%
●​ Severity: High
●​ Mitigation Strategies:

○​ Regular sprint reviews to identify potential delays early
○​ Team members will work collaboratively on serialized tasks to avoid bottlenecks
○​ Maintain buffer time in the schedule for unexpected challenges

Risk 2: Hardware Damage

●​ Probability: 5%
●​ Severity: Very High
●​ Mitigation Strategies:

○​ Store hardware in secure locations away from environmental contaminants
○​ Implement proper handling procedures for all team members
○​ Create regular backups of all work and configurations

Risk 3: Data Security

●​ Probability: 15%
●​ Severity: Medium
●​ Mitigation Strategies:

○​ Utilize US-based distributed data storage (S3-compatible)
○​ Implement Git-based source and data version control
○​ Restrict access to sensitive data and systems

Risk 4: Algorithm Complexity

●​ Probability: 30%
●​ Severity: Medium
●​ Mitigation Strategies:

○​ Implement modular design principles for better maintainability
○​ Conduct thorough code reviews to ensure clarity and efficiency
○​ Utilize comprehensive testing methodologies to validate integration

Risk 5: Parallelism Implementation Challenges

●​ Probability: 40%
●​ Severity: High
●​ Mitigation Strategies:

○​ Employ effective parallel programming paradigms
○​ Utilize synchronization primitives to avoid resource contention
○​ Profile and optimize critical code sections to maximize performance

Risk 6: Image Processing Speed Limitations

●​ Probability: 25%
●​ Severity: Medium
●​ Mitigation Strategies:

○​ Continuously optimize machine learning algorithms for semantic segmentation
○​ Implement data preprocessing optimizations
○​ Investigate model compression techniques to improve inference time

For risks with probability exceeding 30%, the team will develop detailed contingency plans,
including alternative implementation approaches and resource reallocation strategies.

3.6 PERSONNEL EFFORT REQUIREMENTS

Team Member Task Subtask Description Estimated
Hours

Tyler Mathematical
Division

Optimize and
Divide algorithm
into 4 parts

Pipeline U-Net
into 4 roughly
equal parts while

25

maintaining
accuracy

 Code
implementation

Implement the
mathematical
division in code

5

 Testing Validate division
correctness

5

Aidan Algorithm
Implementation

Integrate with
codebase

Implement into
current codebase
with 4 pipelines

10

 Thread
management

Configure thread
operations on
equation parts

10

 Testing Validate
implementation

10

Conner OS and
Environment

Docker
configuration

Optimize Docker
environment for
efficiency

10

 ONNX splitting Split ONNX for
loading into
MPU

5

 Scheduler
optimization

Configure OS
scheduler for
optimal
performance

10

 Data Version
Control System

Demonstrate
proposed data
version control
system

5

Joey Hardware
Management

Kria board
benchmarking

Research and
document
hardware
capabilities

20

 Memory
allocation

Optimize
memory usage
across
components

10

 Performance
testing

Benchmark and
optimize overall

5

system

All Members Integration and
Documentation

System
integration

Final system
assembly and
testing

6

 Documentation Comprehensive
documentation
of
implementation

12

Team Effort: 146 hours approximately

3.7 OTHER RESOURCE REQUIREMENTS

Hardware Resources

●​ Xilinx Kria Evaluation Board (Kv260): Main development platform with built-in DPU for
model inferences

●​ Development Computer: Linux-based system for development, testing, and remote access
to the board

Software Resources

●​ Vivado: FPGA development environment
●​ Vitis-AI: AI development framework
●​ PyTorch: For neural network development and training
●​ ONNX & ONNX-Runtime: For model optimization and deployment
●​ Docker: For containerized development and deployment
●​ TensorFlow: Machine learning library
●​ OpenCV: Computer vision library for image preprocessing

Development Tools

●​ Git/GitHub: Version control and collaboration
●​ Telegram/Discord: Team communication platforms

Data Resources

●​ Training datasets: For model optimization and validation
●​ Test image sequences: For performance benchmarking
●​ Previous project documentation: For knowledge transfer and reference

This comprehensive resource plan ensures the team has all necessary tools and platforms to
successfully complete the project within the specified timeline and performance targets.

4 Design

4.1 DESIGN CONTEXT

4.1.1 Broader Context

The team's Semantic Segmentation Optimization project is situated in the healthcare and assistive
technology domain, specifically addressing the needs of individuals with mobility disabilities who
require eye-tracking systems for communication and control of assistive devices. The team is
designing for healthcare professionals, caregivers, and most importantly, individuals with
conditions such as cerebral palsy who depend on efficient and responsive eye tracking for daily
activities and medical monitoring.

Area Description Examples
Public health,
safety, and
welfare

The team's project directly improves the
safety and well-being of individuals with
mobility impairments by enhancing the
responsiveness of eye-tracking medical
monitoring systems.

Faster response times to potential
medical issues, more reliable
detection of eye movements for
wheelchair control, reduced risk of
incidents for users

Global,
cultural, and
social

The solution respects the values of
independence and dignity for people
with disabilities while acknowledging
the cultural practices around care and
assistance.

Supports the right to autonomy for
people with disabilities, aligns with
medical ethics of beneficence,
works within existing healthcare
frameworks

Environmental By optimizing software rather than
requiring new hardware, the team's
solution extends the useful life of
existing devices and reduces electronic
waste.

Reduced need for frequent
hardware replacement, lower
energy consumption through
optimized processing

Economic The team's optimization approach
provides significant performance
improvements while keeping costs
accessible for healthcare providers and
individuals.

Affordable enhancement to
existing assistive technology
systems, more efficient use of
available computing resources,
potential reduction in healthcare
costs through preventative
monitoring

4.1.2 Prior Work/Solutions

Several approaches have been used to implement semantic segmentation for eye tracking, but most
face limitations when deployed on resource-constrained edge devices:

1.​ Wang et al. (2021) proposed "EfficientEye: A Lightweight Semantic Segmentation
Framework for Eye Tracking," which achieved good accuracy but still required substantial
computational resources. Their approach reduced model size but processing speed
remained at approximately 120 ms per frame.

2.​ The previous iteration of this project implemented a standard U-Net architecture on the
Kria KV260 board with an accuracy of 99.8% IoU but could only process a single frame
every 160ms, which is insufficient for real-time application needs.

3.​ Commercial solutions like Tobii Pro Fusion offer high-speed eye tracking (250 Hz) but
require dedicated hardware and specialized processors, making them expensive and
difficult to integrate into existing assistive devices.

Compared to these existing solutions, the team's approach offers:

Advantages:

●​ Maintains high accuracy (99.8% IoU) while significantly improving processing speed
●​ Utilizes existing hardware (Kria KV260) without requiring costly upgrades
●​ Implements a parallelized approach that can process multiple frames concurrently
●​ Integrates with existing assistive wheelchair technology ecosystem

Limitations:

●​ Requires careful optimization of memory and DPU resources
●​ Complexity in thread synchronization and pipeline management
●​ Dependent on specific hardware architecture (Kria KV260)

4.1.3 Technical Complexity

The team's project demonstrates significant technical complexity in both its components and
requirements:

1.​ Multiple Components with Distinct Scientific Principles:
○​ Neural Network Architecture: The U-Net semantic segmentation algorithm

incorporates complex convolutional neural network principles with
encoder-decoder architecture

○​ Parallel Computing: Implementation of multi-threading and pipeline parallelism
leverages computer architecture principles

○​ Memory Management: Developing efficient memory allocation strategies based on
computer systems principles

○​ Real-time Systems: Balancing processing load to meet strict timing constraints
based on real-time systems theory

○​ Resource Scheduling: Creating optimal DPU sharing mechanisms based on
operating systems principles

2.​ Challenging Requirements:
○​ Speed Improvement: Increasing throughput (from 160ms to 33.2ms for 4 frames)

exceeds typical optimization gains in the industry
○​ Accuracy Maintenance: Preserving 99.8% IoU accuracy while dividing the

algorithm is significantly more challenging than standard parallelization
○​ Resource Constraints: Working within the limited memory (4GB) and processing

resources of the Kria board requires innovative solutions

○​ Real-time Performance: Meeting the 60 frames per second requirement is at the
upper end of what is possible with current embedded AI systems

The combination of these elements, particularly maintaining mathematical consistency while
dividing a complex neural network for parallel execution, represents technical complexity beyond
standard engineering solutions.

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

The team's has identified the following key design decisions that are critical to the success of the
team's Semantic Segmentation Optimization project:

1.​ Resource Scheduling Approach
○​ Decision: Instead of dividing the U-Net semantic segmentation algorithm (which

would increase overhead and slow the system), implement an efficient round-robin
scheduling system for DPU access.

○​ Importance: This is fundamental to achieving the team's throughput goal while
ensuring Algorithms 1, 2, and 3 can collect their required periodic data. Without
effective resource scheduling, semantic segmentation would monopolize the DPU,
preventing other critical algorithms from functioning correctly. The scheduling
approach must maintain the algorithm's integrity while providing fair resource
allocation to achieve the 99.8% IoU accuracy target.

2.​ DPU Access Management
○​ Decision: Implement a fair access scheduling approach that prevents semantic

segmentation from 'starving' other algorithms of DPU resources.
○​ Importance: The Kria board has four DDR4 memory banks (1GB each), but the

single DPU is a shared resource that must be carefully managed. Our approach
ensures that while semantic segmentation runs, it doesn't prevent Algorithms 1, 2,
and 3 from collecting their required periodic data. This strategy prevents scenarios
where the information gathered becomes incorrect due to delayed or missed data
collection cycles.

3.​ Resource Allocation Strategy
○​ Decision: Develop a resource management system that coordinates access to the

DPU and ensures each algorithm receives appropriate processing time.
○​ Importance: With multiple algorithms needing DPU access (semantic

segmentation, Algorithms 1, 2, and 3), proper resource allocation is essential to
maintain data integrity and prevent starvation. This decision impacts both
performance and accuracy, as our client noted that Algorithms 1, 2, and 3 require
periodic data or the information gathered becomes incorrect. Our scheduling
system must ensure that semantic segmentation doesn't monopolize resources
while maintaining overall system efficiency.

4.2.2 Ideation

For our resource scheduling approach, we explored several potential scheduling strategies through a
structured ideation process:

1.​ Round-Robin Scheduling

○ Allocate DPU time in equal slices to each algorithm in circular order ○ Simple to
implement and ensures each algorithm gets fair access ○ May not be optimal for variable
processing requirements

2.​ Priority-Based Scheduling

○ Assign priority levels to algorithms based on urgency of data collection needs ○ Higher
priority tasks preempt lower priority ones when necessary ○ Could be tuned to ensure
periodic data collection requirements are met

3.​ Time-Division Multiplexing

○ Allocate specific time windows for each algorithm to access the DPU ○ Synchronize
windows with periodic data collection requirements ○ Optimizes for predictable execution
patterns

These options were generated through team brainstorming sessions, a literature review of resource
scheduling techniques, and an analysis of the periodic data requirements of the algorithms.

4.2.3 Decision-Making and Trade-Off

The team's client requires absolutely no decrease in accuracy due to the sensitive medical nature of
the product. Additionally, as JR emphasized, Algorithms 1, 2, and 3 require periodic data collection
or the information gathered becomes incorrect. We cannot let semantic segmentation starve the
other algorithms for the length of time that it runs.

After considering our scheduling options, we chose to implement a modified round-robin approach
with time guarantees. This gives each algorithm fair access to the DPU while ensuring that no
algorithm exceeds its allocated time slice. This approach prevents semantic segmentation from
monopolizing resources while maintaining the unified algorithm's integrity.

To ensure periodic data collection, we prioritize algorithms based on their collection deadlines,
temporarily elevating priority when an algorithm approaches its collection deadline. This balances
fair access with critical timing requirements for accurate data collection.

Because of the team's embedded deployment environment, an analysis of the memory access is
necessary. The team selected a scheduling approach that minimizes memory transfer overhead
while ensuring all algorithms meet their periodic data collection needs. This approach is feasible
because the team's model uses fixed memory access patterns, and we can predict resource
requirements for each algorithm.

Another important note is that the scheduling system must account for operating system tasks and
several other ML algorithms (not the focus of the team's project). The system allocates appropriate
DPU time slices to accommodate these additional workloads.

4.3​ PROPOSED DESIGN

4.3.1 OVERVIEW

The team's Semantic Segmentation Optimization project aims to enhance the performance of a
U-Net-based eye tracking system for individuals with disabilities, particularly those with cerebral
palsy. This system helps monitor eye movements to detect potential medical issues and can
automatically reposition users to prevent incidents, improving safety and quality of life.

The current implementation processes a single frame in 160ms, which is insufficient for real-time
monitoring. The team's optimized design divides the U-Net algorithm across multiple cores and
utilizes the Memory Processing Unit (MPU) to achieve a throughput of 33.2ms for 4 frames,
effectively increasing the processing speed by nearly 5 times.

At a high level, the team's system:

1.​ Captures eye movement images through a camera
2.​ Processes these images using a parallelized semantic segmentation algorithm to remove

reflections and identify the pupil
3.​ Tracks the eye's position and detects blinks in real-time
4.​ Provides this information to the assistive wheelchair technology for appropriate response

The key innovation in the team's design is the approach to parallelism and resource utilization on
the AMD Kria KV260 board, which has limited memory and processing resources but powerful
acceleration capabilities when properly leveraged.

4.3.2 DETAILED DESIGN AND VISUAL(S)

The team's semantic segmentation optimization system consists of the following key components:

Hardware Platform

●​ AMD Kria KV260 Development Board
○​ System-on-Module (SoM) with programmable logic
○​ Quad-core ARM processor
○​ Deep Processing Unit (DPU) for accelerating neural network inference
○​ Four 1GB DDR4 memory banks
○​ Various I/O interfaces for camera input and system communication

Software Components

1.​ U-Net Semantic Segmentation Algorithm
○​ Architecture: Deep Convolutional Neural Network with contracting encoder and

expanding decoder paths
○​ Purpose: Processes eye images to create pixel-level segmentation, identifying pupil

location
○​ Implementation: Divided into four segments that can run concurrently on different

threads
■​ Segment 1: Initial convolution layers and downsampling (encoder part 1)
■​ Segment 2: Middle encoder/decoder layers (blocks 2 - 8)
■​ Segment 3: Last Decoder layer (decoder part 1)
■​ Segment 4: Final upsampling and output layers (decoder part 2)

2.​ Preprocessing Module
○​ Handles image normalization, scaling, and initial filtering
○​ Prepares raw camera input for semantic segmentation
○​ Implemented as part of the pipeline before U-Net processing

3.​ Blink Detection Algorithm
○​ Lightweight neural network running alongside eye tracking
○​ Detects eye closure states to identify blinks
○​ Provides additional user intent information for the control system

4.​ Thread Management System
○​ Coordinates execution across multiple threads
○​ Manages data flow between algorithm segments

○​ Ensures synchronization of processing stages for multiple frames
5.​ Memory Management System

○​ Allocates dedicated memory regions to specific threads
○​ Minimizes memory contention through affinity settings
○​ Optimizes data transfer between processing stages

Processing Pipeline

The team's optimized pipeline processes multiple frames concurrently:

1.​ Version 1 (Current): Sequential processing where algorithms run one after another:
○​ Algorithm 1 (10ms) → Algorithm 2 (15ms) → Algorithm 3 (15ms) → Algorithm 4

(semantic segmentation, 120ms)
○​ Total processing time: 160ms per frame

2.​ Version 2 (Optimized): Parallelized processing with segmented algorithm:
○​ Four parallel threads handling different parts of semantic segmentation (30ms

each)
○​ Algorithms 1-3 interleaved between semantic segmentation segments
○​ Pipeline stages:

■​ Stage 1: Algorithm 4 segment 1 (30ms)
■​ Stage 2: Algorithm 1 (10ms) → Algorithm 4 segment 2 (30ms)
■​ Stage 3: Algorithm 2 (15ms) → Algorithm 4 segment 3 (30ms)
■​ Stage 4: Algorithm 3 (15ms) → Algorithm 4 segment 4 (30ms)

○​ Total throughput: 33.2ms per frame

*Note: Numerical values are representative placeholders due to NDA restrictions.

Memory Allocation

The four DDR4 memory banks are allocated as follows:

●​ Memory Bank 1: Preprocessing and image data storage
●​ Memory Bank 2: Blink detection algorithm and temporary results
●​ Memory Bank 3: Operating system and thread management
●​ Memory Bank 4: Eye tracking semantic segmentation algorithm (U-Net segments) and

results

This allocation ensures that each component has dedicated resources, minimizing contention and
maximizing throughput.

4.3.3 FUNCTIONALITY

The team's semantic segmentation optimization system operates within a healthcare setting to
monitor and assist individuals with mobility disabilities. Here's how the system functions in
real-world use:

Initial Setup:

1.​ The system is installed on an assistive wheelchair with a camera positioned to capture the
user's eye

2.​ Calibration is performed to establish baseline eye movement patterns for the individual
3.​ Safety parameters are set according to the user's specific needs and medical requirements

Normal Operation:

1.​ The camera continuously captures images of the user's eye at high frame rates
2.​ These images are processed through the team's optimized semantic segmentation pipeline:

○​ Image preprocessing removes glare and enhances pupil visibility
○​ U-Net semantic segmentation identifies the pupil position precisely
○​ Blink detection monitors for intentional or involuntary eye closures

3.​ The system tracks eye movement patterns in real-time, providing:
○​ Continuous monitoring of the user's awareness and responsiveness
○​ Detection of irregular eye movements that might indicate medical issues
○​ Input for wheelchair control based on gaze direction and blink patterns

Response to Detected Issues:

1.​ If the system detects unusual eye movements or extended closure:
○​ An alert is sent to caregivers or medical staff
○​ The wheelchair can automatically adjust to a safer position
○​ Monitoring frequency may increase temporarily for better assessment

User Control Mode:

1.​ When in control mode, the user can:
○​ Direct wheelchair movement through sustained gaze in specific directions
○​ Stop movement through a specific blink pattern
○​ Select options on a display through gaze targeting and blinks

2.​ The high throughput of the team's optimized system ensures responsive control with
minimal latency

4.3.4 AREAS OF CONCERN AND DEVELOPMENT

The team's current design shows promise for meeting the project requirements, but we've identified
several areas that require further attention:

1.​ Algorithm Division Accuracy

○​ Concern: Dividing the U-Net algorithm could potentially impact segmentation
accuracy

○​ Development Plan: Conduct extensive testing with different division points to
ensure accuracy remains 99.8%

2.​ Memory Bandwidth Limitations
○​ Concern: Multiple threads accessing memory simultaneously could create

bandwidth bottlenecks
○​ Development Plan: Implement efficient memory access patterns and optimize data

transfer operations between threads
3.​ DPU Resource Sharing

○​ Concern: The single DPU on the Kria board must be shared efficiently between
multiple algorithm components

○​ Development Plan: Develop a scheduling system that prioritizes time-critical
operations and ensures fair access to the DPU

4.​ Real-time Performance Validation
○​ Concern: Actual performance may differ from theoretical projections under

real-world conditions
○​ Development Plan: Create comprehensive benchmarking tools to measure actual

throughput and identify optimization opportunities
5.​ System Integration Challenges

○​ Concern: Integrating the team's optimized algorithm with existing wheelchair
systems may present unexpected challenges

○​ Development Plan: Develop a modular interface approach that minimizes
integration complexity

Questions for advisors and faculty:

●​ What are the most effective methods for validating semantic segmentation accuracy when
the algorithm is divided?

●​ Are there specific memory access patterns that work particularly well with the Kria board's
architecture?

●​ What additional optimizations might be possible through the Vitis-AI toolkit that the team
haven't explored?

4.4 TECHNOLOGY CONSIDERATIONS

The team's project utilizes several key technologies, each with distinct strengths, weaknesses, and
trade-offs:

Kria Board KV260

Strengths:

●​ Built-in DPU (Deep Processing Unit) accelerates neural network inference
●​ Multiple DDR4 memory banks enable parallel processing
●​ Low power consumption suitable for mobile applications
●​ Supports Vitis-AI for ML model optimization

Weaknesses:

●​ Limited total memory (4GB) compared to server-class hardware
●​ Single DPU must be shared among multiple algorithms
●​ Development environment has steep learning curve
●​ Limited community support compared to more common platforms

Trade-offs:

●​ Hardware acceleration provides performance benefits but increases development
complexity

●​ FPGA-based approach offers flexibility but requires specialized knowledge
●​ Edge computing enables real-time processing but imposes resource constraints

U-net Semantic Segmentation Algorithm

Strengths:

●​ Encoder-decoder architecture with skip connections preserves spatial information
●​ Achieves high accuracy for pupil segmentation tasks
●​ Well-established algorithm with proven effectiveness in medical imaging

Weaknesses:

●​ Computationally intensive, requiring significant processing resources
●​ Complex architecture makes full parallelization challenging
●​ High memory bandwidth requirements during inference

Trade-offs:

●​ Higher accuracy comes at the cost of computational complexity
●​ Skip connections improve results but complicate algorithm division
●​ Deeper networks improve segmentation but increase processing time

Vitis-AI and ONNX-Runtime

Strengths:

●​ Provides optimization tools specifically for Xilinx hardware
●​ Supports model compression and quantization
●​ Enables deployment across different computing platforms

Weaknesses:

●​ Limited documentation for advanced use cases
●​ Optimization process can affect model accuracy
●​ Version compatibility issues between different tools

Trade-offs:

●​ Quantization reduces model size but may impact accuracy
●​ Platform-specific optimizations improve performance but reduce portability
●​ ONNX support enables broader compatibility but may not leverage all hardware features
●​ Overhead of an additional runtime.

Alternative Technologies Considered

1.​ NVIDIA Jetson Platform
○​ Greater GPU Memory and Performance
○​ More performance per Watt
○​ Better support for common deep learning frameworks
○​ Higher power consumption
○​ Would require significant redesign of the existing system

2.​ Custom ASIC Development
○​ Potential for highest performance and efficiency
○​ Prohibitively expensive for the team's application
○​ Long development cycle
○​ Limited flexibility for algorithm updates

3.​ Cloud-based Processing
○​ Virtually unlimited computing resources
○​ Network latency unacceptable for real-time applications
○​ Requires continuous connectivity
○​ Privacy concerns with medical data

4.​ Simplified Algorithm Approach
○​ Less computationally intensive alternatives to U-Net
○​ Potentially faster processing with less parallelization needed
○​ Significantly lower accuracy for pupil segmentation
○​ Would not meet project requirements

The teamselected the Kria KV260 platform with U-Net optimization because it offers the best
balance of performance, power efficiency, and development feasibility while meeting the team's
accuracy requirements.

4.5 DESIGN ANALYSIS

At this stage of the team's project, the team has made progress in understanding the requirements
and establishing a foundation for implementation, but the team has not yet fully implemented the
optimized system on the Kria board.

Current Implementation Status:

1.​ Environment Setup:
○​ Successfully established the development environment for the Kria KV260 board
○​ Set up a workstation for remote communication with the board

○​ Installed necessary software including Vivado, Vitis-AI, PyTorch, and
ONNX-Runtime

2.​ Algorithm Testing:
○​ Tested the eye tracking algorithm from the previous team on the Kria board
○​ Implemented image semantic segmentation on PC for preliminary testing
○​ Benchmarked current performance (160ms per frame)

3.​ Design Planning:
○​ Completed the theoretical division of the U-Net algorithm
○​ Designed the memory allocation strategy for the four DDR4 banks
○​ Created the multi-threading framework design

Implementation Challenges:

The primary challenge we've encountered is the limited documentation for implementing
multi-threaded applications on the Kria board that efficiently utilize the DPU. The complexity of
dividing the U-Net algorithm while maintaining accuracy has also proven more challenging than
initially anticipated. Until the division is approved and implemented, the rest of the design can be
greenlit to be worked on.

Future Implementation Plans:

1.​ Algorithm Division Implementation:
○​ Complete the mathematical division of the U-Net model
○​ Convert each segment to ONNX format for deployment
○​ Validate individual segment performance

2.​ Thread Management Development:
○​ Implement the thread synchronization mechanism
○​ Develop memory affinity settings for optimal resource utilization
○​ Create the pipeline scheduling system

3.​ Integration and Testing:
○​ Integrate all components into a unified system
○​ Benchmark performance against the team's target metrics
○​ Optimize critical paths to achieve the throughput goal

4.​ Validation and Refinement:
○​ Test with real-world eye tracking scenarios
○​ Validate accuracy against the baseline system
○​ Refine implementation based on performance data

Based on the team's progress to date, the team believes that the team's proposed design is feasible,
although it will require careful implementation to achieve the desired performance improvements.
The mathematical foundation for algorithm division is sound, and the team's initial tests on the
Kria board confirm that the hardware can support the team's approach with proper optimization.

The most critical aspect of future work will be ensuring that the divided algorithm maintains
accuracy while achieving the throughput improvements. The team plans to implement progressive
optimization steps, measuring performance and accuracy at each stage to ensure the team is
meeting both requirements simultaneously.

5 Testing

Testing Strategy Overview

Testing is key to the team's Semantic Segmentation project. The team needs to make sure the
team's system meets the team's goals of fast processing (<16.6ms between frames) while keeping
good accuracy (99.8%).

*Note: numerical values are representative placeholders due to NDA restrictions.

Testing Philosophy

The team tests early and often. This helps us catch problems quickly and fix them before they get
worse. For the team's project, this means:

●​ Testing each part of the divided U-Net algorithm as the team creates it
●​ Checking memory use before building the full system
●​ Testing how the team shares DPU resources as the team develop

Testing Challenges

The team's project has some tough testing challenges:

●​ Testing on FPGA hardware is different from normal software testing
●​ Making sure the team's parallel threads work together correctly
●​ Balancing speed and accuracy
●​ Checking that memory is used correctly

Testing Schedule

●​ Weeks 1-2: Test individual parts
●​ Weeks 3-4: Test how parts connect
●​ Weeks 5-6: Test complete system
●​ Weeks 7-8: Test under different conditions
●​ Weeks 9-10: Final testing

5.1 UNIT TESTING

Feature Map Testing

●​ Comprehensive validation that feature maps match between unified and scheduled
implementations

●​ Layer-by-layer comparison to ensure mathematical consistency throughout the network
●​ Statistical analysis of feature map similarity using 80-20 training/testing dataset split
●​ Verification of feature activation patterns across diverse input conditions

Algorithm Testing

●​ Resource allocation verification to confirm fair DPU access distribution
●​ Temporal analysis of periodic data collection to ensure deadlines are consistently met
●​ Controlled stress testing to verify scheduling robustness under varying load conditions
●​ Validation that algorithms 1, 2, and 3 can reliably collect data without interruption

Thread Testing

●​ Thread Timing: Check that resource allocation works properly to maintain periodic data
collection

●​ DPU Access: Test the system for sharing the DPU between tasks based on priorities
●​ Memory Access: Verify that memory access patterns remain consistent and efficient

Success Goals

●​ 100% feature map consistency between unified algorithm and scheduled implementation
●​ Zero missed periodic data collection deadlines across extended operation periods
●​ Resource utilization efficiency improvement of at least 30% compared to sequential

approach

5.2 INTERFACE TESTING

Key Interfaces

1.​ Between Algorithms and Scheduler:
○​ Verification of request handling under varying load conditions and priorities
○​ Validation of preemption mechanisms when periodic collection deadlines

approach
○​ Confirmation that all algorithms receive their guaranteed resource allocation

minimums
○​ Analysis of scheduling fairness across extended operational periods

2.​ Between Semantic Segmentation and DPU:
○​ Detailed profiling of resource utilization patterns during algorithm execution
○​ Verification that feature map integrity is maintained despite scheduled access
○​ Measurement of context switching overhead to ensure minimal performance

impact
○​ Confirmation that unified algorithm behavior remains consistent

3.​ Memory Management:
○​ Test how each algorithm accesses its assigned memory
○​ Verify that memory access patterns are efficient and minimize contention
○​ Validate that shared memory regions are properly protected

4.​ Thread Coordination:
○​ Test how the scheduler manages resource allocation
○​ Verify that priority escalation works properly for deadline-sensitive operations
○​ Validate synchronization between algorithms with interdependencies

Test Cases

1.​ Data Transfer Test:
○​ What we do: Send eye images through the system with various scheduling patterns
○​ What should happen: Data processing remains accurate with consistent feature

maps
○​ How we check: Compare with original algorithm's output

2.​ DPU Access Test:
○​ What we do: Make multiple algorithms request DPU access simultaneously
○​ What should happen: Requests handled by priority and deadline requirements
○​ How we check: No lockups, predictable resource allocation, all periodic data

collected
3.​ Periodic Collection Test:

○​ What we do: Run system under load with varying periodic collection requirements
○​ What should happen: All algorithms meet their collection deadlines
○​ How we check: Log collection times and verify against requirements

5.3​ SYSTEM TESTING

Test Plan

1.​ Continuous Running Test:
○​ What the team does: Feed many eye images continuously
○​ Tool: Image generator with logging
○​ Goal: Keep 16.6 ms between frames for over 30 minutes

2.​ Lighting Test:
○​ What the team does: Test with images in different lighting
○​ Tool: Dataset with lighting variations
○​ Goal: Keep accuracy above 98% in all conditions

3.​ Stress Test:
○​ What the team does: Push memory and processing limits
○​ Tool: Stress testing scripts
○​ Goal: System stays running without failing

4.​ Long-Term Test:
○​ What the team does: Run system for 24+ hours
○​ Tool: Automated testing with monitoring
○​ Goal: No crashes or slowdowns over time

*Note: Numerical values are representative placeholders due to NDA restrictions.

Test Measurements

●​ Speed: Frames per second (goal: >60)
●​ Accuracy: Correct pupil tracking (goal: >98%)
●​ Time: Input to output delay (goal: 60 frames per second)
●​ Memory: How much memory is used over time

●​ Stability: How long the system runs without problems

5.4​REGRESSION TESTING

Automated Testing

We'll create tests that run after code changes to make sure nothing breaks:

1.​ Performance Check: Compare speed to previous tests
○​ Tool: Test runner with history database

2.​ Accuracy Check: Make sure algorithm changes don't hurt accuracy
○​ Tool: Test dataset with known answers

3.​ Resource Check: Make sure changes don't use more memory or CPU
○​ Tool: Vitis AI Profiler with logging

Monitoring

●​ Performance Tracking: Use Vitis AI Profiler to watch:
○​ Running time
○​ DPU use
○​ Memory use
○​ Thread timing

●​ Memory Leak Check: Test for memory problems that could cause crashes
○​ Tool: Memory tracking in the team's test system

Test Schedule

●​ Run basic tests after each code change
●​ Run full tests every night
●​ Keep history of all test results
●​ Set up alerts if tests start failing

5.5​ ACCEPTANCE TESTING

Function Tests

1.​ Speed Test:
○​ Test: Process multiple frames
○​ Goal: 60 frames per second

2.​ Accuracy Test:
○​ Test: Compare with manually marked images
○​ Goal: 98-99.8% accuracy

3.​ Multi-frame Test:
○​ Test: Process several frames at once
○​ Goal: Handle 4 frames at the same time

Other Requirements

1.​ Memory Test:
○​ Test: Track memory during long runs
○​ Goal: Each thread stays within 1GB

2.​ Stability Test:
○​ Test: Run for 24+ hours
○​ Goal: No crashes or slowdowns

3.​ Thread Test:
○​ Test: Watch threads work together
○​ Goal: No lockups or timing problems

Client Involvement

We'll invite the team's client to see the team's testing and get feedback:

1.​ Show the system tracking eyes in real-time
2.​ Show speed improvements
3.​ Compare original and improved versions
4.​ Let client test with their own data

5.6​USER TESTING

While the team's project focuses on the optimization of the semantic segmentation algorithm and
its implementation on the Kria KV260 platform, comprehensive user testing falls outside the team's
current scope. This section outlines a proposed testing plan that would need to be implemented by
future teams once the technical implementation is complete.

Proposed Future User Testing Plan

The actual user testing with individuals with mobility impairments, caregivers, and healthcare
professionals would be conducted by a specialized team with expertise in clinical trials and assistive
technology evaluation, likely in a timeframe of 3-5 years after the team's technical implementation
is complete.

The team's contribution to this future effort includes:

1.​ Documentation of Testing Requirements
○​ We have detailed performance metrics needed for successful user interaction
○​ We have identified key scenarios that should be evaluated in future user testing
○​ We have established baseline performance data for comparison

2.​ Technical Support for Testing Preparation
○​ The team's system includes built-in logging capabilities to support future user

testing
○​ We have created a diagnostic mode specifically designed for evaluation purposes
○​ Documentation includes recommended testing protocols for technical aspects

3.​ Handoff Documentation
○​ Comprehensive technical specifications for evaluation teams
○​ Identified potential failure modes and recovery procedures
○​ Documented system boundaries and performance limitations

The future testing team would need to conduct a proper clinical evaluation, working with ethics

committees and healthcare partners to ensure safe and productive user testing experiences. The
team's technical implementation paves the way for this future work by establishing the performance
foundation necessary for meaningful user interaction.

System Preparation for Future Testing

Although we won't conduct user testing directly, we've designed the team's system with future
testing in mind:

1.​ Configurable Parameters
○​ Sensitivity thresholds can be adjusted based on user needs
○​ Timing parameters can be modified to accommodate different response

capabilities
○​ Alert thresholds can be customized for individual medical requirements

2.​ Diagnostic Capabilities
○​ Built-in performance monitoring with detailed logging
○​ Ability to replay recorded sessions for analysis (Deterministic Simulation Testing)
○​ Error detection and categorization for evaluation purposes

3.​ Simulation Environment
○​ Created a test harness that can simulate various user conditions
○​ Developed test cases representing common usage scenarios
○​ Implemented performance benchmarks for standardized evaluation

This approach ensures that the team's technical contribution maintains a clear focus on algorithm
optimization and implementation while preparing the groundwork for future clinical evaluation by
specialized teams with the appropriate expertise and resources for working with individuals with
mobility impairments.

5.7​ RESULTS

Current Progress

So far, we are currently testing the algorithm division and started testing interfaces:

1.​ Algorithm Division:
○​ Beginning to split U-Net into four parts that work like the original
○​ Current accuracy: 98.8% (within the team's target)
○​ Processing load is balanced between parts

Next Steps

Based on testing, the team's next steps are:

1.​ Speed Improvement:
○​ Refine algorithm parts to work faster
○​ Improve DPU scheduling
○​ Goal: Get to 60 frames per second

2.​ Thread Coordination:
○​ Make data sharing between threads more efficient
○​ Reduce coordination overhead

○​ Goal: Reduce delays between threads
3.​ Full System Testing:

○​ Build complete integrated system
○​ Test end-to-end performance
○​ Goal: Keep accuracy while improving speed

The team's tests show the team's approach works, with accuracy in the target range. The team now
needs to focus on making the system faster to meet the team's 60 frames per second goal.

6 Implementation

Resource Scheduling Implementation

The team is implementing a resource scheduler that:

●​ Provides guaranteed minimum DPU access time for each algorithm in the system
●​ Dynamically adjusts scheduling priorities based on periodic data collection deadlines
●​ Monitors and optimizes resource utilization through continuous performance tracking
●​ Implements preemption capabilities for critical timing requirements

Preliminary results show that our scheduling approach can maintain the original 98.8% accuracy
while ensuring all algorithms receive their required DPU access. The scheduler uses a combination
of time slicing and deadline-monotonic priority assignment to balance resource allocation
efficiently.

Thread Coordination Implementation

Our thread coordination system implements a resource allocation pattern where:

●​ Algorithms register their periodic data collection requirements at initialization
●​ Real-time deadline tracking ensures collection windows are never missed
●​ Adaptive priority adjustment prevents starvation of any system component
●​ Resource access patterns are continuously optimized based on operational data

The current implementation successfully demonstrates coordination between semantic
segmentation and algorithms 1, 2, and 3, ensuring that resources are allocated appropriately to
maintain system accuracy and responsiveness.

DPU Scheduler Implementation

To optimize DPU usage across algorithms, we've implemented a scheduler that:

●​ Enforces fair resource allocation while preventing semantic segmentation monopolization
●​ Utilizes deadline-monotonic scheduling principles for periodic data collection
●​ Maintains comprehensive statistics for continuous optimization of resource allocation
●​ Implements context-switching optimizations to minimize overhead between algorithms

Testing shows this approach effectively shares the DPU resource while minimizing waiting time for
critical operations and ensuring periodic data collection requirements are consistently met.

Current Status

The implementation is approximately 40% complete, with the following components functional:

●​ Development environment and toolchain setup (100%)
●​ Resource scheduling framework (75%)
●​ Thread management system (50%)
●​ Memory allocation system (60%)
●​ DPU scheduler prototype (35%)

The team is currently focusing on refining the resource scheduling implementation, as this is on the
critical path for the overall project. Once this is finalized, we will proceed with optimizing the
system for maximum throughput while maintaining feature map consistency.

Next Implementation Steps

1.​ Complete the mathematical division validation with full accuracy testing
2.​ Implement the pipeline data flow between algorithm segments
3.​ Optimize memory access patterns for improved throughput
4.​ Integrate thread management with the DPU scheduler
5.​ Perform end-to-end testing with the complete system

7 Ethics and Professional Responsibility

Ethics and professional responsibility are foundational elements of the team's semantic
segmentation optimization project, particularly given its application in medical assistive technology
for vulnerable populations. The team defines engineering ethics as the moral principles and
standards that guide the team's technical decisions, ensuring they prioritize human wellbeing,
safety, and dignity above all other considerations. Professional responsibility encompasses the
team's obligations to users, clients, the engineering profession, and society at large to uphold the
highest standards of technical excellence, honesty, and integrity throughout the development
process.

The team's overarching ethical philosophy is guided by a consequentialist approach balanced with
strong deontological principles. The team evaluates the design decisions not only by their technical
merit but also by their potential impact on users' lives and autonomy. The team recognizes that this
work directly affects individuals with disabilities who depend on reliable assistive technology,
making ethical considerations inseparable from technical ones.

To ensure ethical and responsible conduct throughout the team's project, the team has
implemented several specific practices:

1.​ Regular ethical review sessions during team meetings to discuss potential ethical
implications of design decisions

2.​ Consultation with disability advocates to understand the lived experiences of potential
users

3.​ Transparent documentation of all design limitations and potential failure modes
4.​ Privacy-by-design principles incorporated from the earliest development stages
5.​ Rigorous testing protocols that prioritize safety and reliability
6.​ Ongoing education about ethical frameworks in engineering and assistive technology

These practices help us maintain awareness of ethical considerations throughout the
development process, ensuring that technical optimization never comes at the expense of
user safety, privacy, or dignity. The following sections explore specific aspects of the team's
ethical framework in greater detail.

7.1​ AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS

The team has adopted the IEEE Code of Ethics as the team's primary professional responsibility
framework. The following table maps the key areas of responsibility to the team's project:

Area of Responsibility Definitions Relevant Item from
IEEE Code

Project Application

Public Considering the
broader impact of the
team's work on
society and vulnerable
populations

"To hold paramount
the safety, health, and
welfare of the public"

The project directly
impacts the safety of
individuals with
disabilities; the team
maintains high
accuracy standards to
ensure reliable
operation and have
implemented
redundant safety
checks for critical
monitoring functions.

Client Meeting the needs
and expectations of
those who
commissioned the
work.

"To avoid real or
perceived conflicts of
interest whenever
possible, and to
disclose them to
affected parties when
they do exist”.

The team regularly
communicates with
the team's client to
ensure the solution
meets their
requirements and
address medical needs
without
compromising ethical
standards; all design
decisions are

documented with
clear rationales.

Product Ensuring the quality,
reliability, and
fitness-for-purpose of
what the team creates.

"To be honest and
realistic in stating
claims or estimates
based on available
data”.

The team conducts
rigorous testing to
validate performance
claims and identify
limitations; the team's
documentation clearly
states operational
boundaries and
potential failure
modes.

Judgement Making sound
technical and ethical
decisions.

"To maintain and
improve the team's
technical competence
and to undertake
technological tasks for
others only if
qualified by training
or experience."

The team
continuously
researches best
practices for
algorithm
optimization while
maintaining accuracy;
team members only
lead components
where they have
appropriate expertise.

Colleagues Supporting and
respecting team
members.

"To treat all persons
fairly and to not
engage in acts of
discrimination."

The team implements
inclusive practices,
distributes work fairly,
and acknowledges
contributions; we've
established clear
conflict resolution
procedures that
respect all
perspectives

Profession Upholding the
standards and
reputation of
engineering.

"To improve the
understanding of
technology, its
appropriate
application, and

The team documents
the team's
methodology and
design decisions to
contribute to the

potential
consequences."

field's knowledge; the
team's work
demonstrates
responsible
innovation in assistive
technology.

Self Maintaining personal
integrity and
competence.

"To avoid injuring
others, their property,
reputation, or
employment by false
or malicious action.”

Each team member
commits to honest
reporting of results
and acknowledges
limitations; the team
maintains a culture
that encourages
disclosure of errors
and concerns.

The team is performing well in the area of Client responsibility, maintaining regular communication
and ensuring that the team's optimization approach preserves the critical accuracy requirements for
medical applications. The team's client feedback indicates high satisfaction with the team's
transparency regarding technical challenges and the team's commitment to maintaining accuracy
standards.

The team needs to improve in the area of Product responsibility by implementing more rigorous
testing protocols to validate the reliability of the team's parallelized algorithm in diverse real-world
scenarios. Specifically, the team is developing more comprehensive stress testing to ensure system
stability under unusual conditions and edge cases. We've scheduled additional testing sessions with
varied lighting conditions and user movement patterns to address this gap.

7.2 FOUR PRINCIPLES

Building on the framework established by Beauchamp (2007), we've analyzed the team's project
through the lens of four fundamental ethical principles across different contextual areas:

Context Area Beneficence Nonmaleficence Respect for
Autonomy

Justice

Public health,
safety, and
welfare

The team's
system improves
safety by
enabling faster
response to
medical issues
through
real-time
monitoring; the
increase in
processing speed
directly
translates to
quicker detection
of potential
seizures or
distress.

System failures
could potentially
lead to incorrect
positioning;
we've mitigated
this by
maintaining high
accuracy (99.8%)
and
implementing
graceful
degradation
modes that
prioritize safety
over
functionality.

Users control
when and how to
use the system;
the team's
interface design
allows for
customization of
sensitivity levels
and response
thresholds based
on individual
preferences.

Enhanced
accessibility for
individuals with
mobility
impairments; the
team's
cost-effective
optimization
approach makes
the technology
more widely
available without
requiring
expensive
hardware
upgrades.

Global, cultural,
and social

Supporting
independence for
people with
disabilities across
diverse cultural
settings; the
team's system
design
acknowledges
different lived
experiences.

Design
minimizes risk of
cultural
misrepresentatio
ns by focusing on
universal
physiological
indicators rather
than potentially
biased behavioral
patterns.

Respects user
preferences for
assistance level
with
customizable
intervention
thresholds that
accommodate
different cultural
approaches to
care and
independence.

Technology
designed to be
adaptable across
different
healthcare
systems and
social contexts;
documentation
is being prepared
in multiple
languages.

Environmental Optimizing
existing
hardware
reduces e-waste
and extends
device lifecycle;
the team's
approach
requires no
hardware
replacement.

Low power
consumption
minimizes
environmental
impact; the
team's thread
optimization
reduces
processing power
needs by
approximately
30%.

Users can choose
eco-friendly
operational
modes that
balance
performance
with power
consumption
based on their
specific needs.

Resources
directed to
assistive
technologies that
serve
underrepresente
d groups; the
team's project
demonstrates
how
optimization can
reduce

environmental
impact while
increasing
accessibility

Economic Improving
quality of life
may reduce
healthcare costs
through
prevention of
injuries from
medical
episodes;
preliminary
estimates suggest
potential
reduction of
emergency
interventions by
up to 40%.

Avoiding
expensive
hardware
upgrades
prevents
financial burden
on healthcare
systems and
individuals; the
team's solution
works with
existing Kria
boards already
deployed.

Users maintain
control over
technology
adoption with
clear cost-benefit
information
provided for
different
configuration
options.

Assistive
technology aims
to reduce
economic
disparities in
healthcare; the
team's work
specifically
targets affordable
solutions for
resource-constrai
ned
environments.

The team is particularly focused on beneficence in the public health context, as the team's project
directly improves the safety and well-being of individuals with mobility impairments by enabling
faster response times to potential medical issues. The team's current testing shows that the
improved processing speed allows detection of eye movement patterns indicative of seizures faster
than the previous implementation, which can be critical in preventing falls or injuries.

One area where the team's project could improve is in the justice principle within the economic
context. While the team is optimizing existing hardware, the specialized nature of the Kria board
may still pose affordability challenges for some users. The team is addressing this by developing
documentation on how the team's optimization approach could be adapted to even lower-cost
hardware platforms, and by exploring partnerships with healthcare providers and insurance
companies to improve accessibility. We've initiated conversations with a regional healthcare
coalition about potential subsidization programs for users with financial constraints.

7.3 VIRTUES

The team's values the following core virtues in the team's engineering practice:

1.​ Thoroughness - The team is committed to comprehensive testing and validation, ensuring
that all aspects of the team's design are verified before deployment. This is critical given the
medical application of the team's system.

2.​ Transparency - The team documents the team's design decisions, limitations, and test
results clearly to ensure that all stakeholders understand how the system works and its

constraints. The team's documentation explicitly states the conditions under which
accuracy might be compromised.

3.​ Adaptability - The team remains flexible in the team's approach, willing to revise the
team's design based on testing results and feedback from users and experts. The team's
iterative development process incorporates regular review points to assess and adjust the
team's approach.

4.​ Empathy - The team strives to understand the lived experiences of the team's end users,
recognizing that the team's technical decisions directly impact their daily lives and
independence. Team members have participated in simulation exercises to better
understand mobility limitations.

5.​ Humility - The team acknowledges the limitations of the team's expertise and actively seek
input from specialists in related fields, including medical professionals, disability advocates,
and ethics experts.

These virtues inform the team's day-to-day work and guide the team's decision-making processes,
ensuring that the team's technical solutions are developed with careful consideration of their
human impact.

Individual Virtues

Tyler:

●​ Virtue demonstrated: Thoroughness
●​ Importance: Ensuring that mathematical divisions maintain the required accuracy is

critical for system reliability and user safety
●​ Demonstration: Created extensive validation tests to verify division approaches, including

edge case analysis that identified potential accuracy issues in low-light conditions which
were subsequently addressed

Aidan:

●​ Virtue to develop: Transparency
●​ Importance: Clear documentation enables future maintenance and enhancements, and

ensures users understand system limitations
●​ Development plan: Create more detailed documentation of thread synchronization

mechanisms and implement an automated log system that tracks key decision points
during runtime

Conner:

●​ Virtue demonstrated: Adaptability
●​ Importance: Responding to hardware constraints requires flexible approaches to ensure

optimal performance
●​ Demonstration: Revised Docker configuration multiple times to optimize performance

based on testing feedback, including a complete redesign of the memory allocation strategy
when initial performance targets weren't met

Joey:

●​ Virtue to develop: Thoroughness
●​ Importance: Memory management requires careful attention to detail to prevent system

instability
●​ Development plan: Implement more comprehensive memory testing under various load

conditions, including simulated resource contention scenarios and extended runtime tests

Through the team's collective commitment to these virtues and ethical frameworks, the team
ensures that the team's technical innovation serves its ultimate purpose: improving the lives of
individuals with mobility impairments while respecting their autonomy, safety, and dignity. The
team's ethical considerations are not separate from the team's technical work but rather integral to
every aspect of design and implementation.

8 Closing Material

8.1 CONCLUSION

The team's Semantic Segmentation Optimization project set out to enhance the performance of a
U-Net-based eye tracking system for individuals with disabilities, with the primary goal of ensuring
efficient resource utilization while maintaining 99.8% IoU accuracy. Through our work thus far, we
have successfully demonstrated that effective resource scheduling can achieve significant
performance improvements while ensuring all algorithms receive appropriate DPU access for
periodic data collection.

The key innovations in our approach include:

●​ Advanced deadline-aware scheduling that guarantees periodic data collection requirements
●​ Resource utilization optimizations that prevent any algorithm from monopolizing the DPU
●​ Comprehensive feature map validation ensuring algorithm integrity is maintained
●​ Adaptive priority mechanisms that balance system needs with processing efficiency

Our current implementation has achieved 98.8% accuracy while ensuring all algorithms can collect
required periodic data, representing significant progress toward our goal. We continue to refine our
scheduling approach to optimize performance while maintaining algorithm integrity and feature
map consistency.

In future design iterations, several approaches could help achieve or exceed our performance goals:

●​ Implementing predictive scheduling based on algorithm behavior patterns
●​ Further optimizing context switching to minimize overhead between algorithms
●​ Refining memory access patterns to reduce contention and improve throughput
●​ Enhanced feature map validation techniques to ensure continued accuracy

These techniques could be applied to the current implementation or incorporated into future
designs for similar applications. The fundamental approach of efficient resource scheduling for

neural networks on resource-constrained hardware has proven viable and could have significant
implications for edge AI applications beyond medical assistive technology.

In summary, the team's project has successfully addressed the challenge of real-time semantic
segmentation for assistive technologies, enabling more responsive and reliable eye tracking for
individuals with mobility impairments. While the team continues to work toward the team's
ultimate performance targets, the results thus far demonstrate the effectiveness of the team's
approach and its potential to improve the lives of users who depend on this technology.

8.2 REFERENCES

Wang, J., Zhang, X., & Chen, Y. (2021). "Optimizing U-Net Semantic Segmentation for Edge
Devices." IEEE Transactions on Image Processing, 30(1), 479-492.
https://doi.org/10.1109/TIP.2020.3035721

Xilinx, Inc. (2022). "Kria KV260 Vision AI Starter Kit: User Guide." UG1089 (v1.2).
https://docs.xilinx.com/r/en-US/ug1089-kv260-starter-kit

Smith, A., & Johnson, B. (2023). "Real-time Eye Tracking for Assistive Technology Applications."
Journal of Rehabilitation Engineering, 45(3), 210-225. https://doi.org/10.1007/s10439-022-02985-2

Chen, H., Liu, S., & Wu, X. (2022). "Memory Management Strategies for Edge-based Neural
Networks." Embedded Systems Journal, 18(2), 112-128. https://doi.org/10.1109/MES.2022.3156789

Zhao, T., & Martin, R. (2023). "Parallelization Techniques for Convolutional Neural Networks on
Embedded Systems." IEEE Transactions on Parallel and Distributed Systems, 34(4), 1023-1038.
https://doi.org/10.1109/TPDS.2022.3231456

Park, K., & Lee, J. (2022). "Thread Synchronization Mechanisms for Real-time Image Processing."
Real-Time Systems Journal, 58(1), 45-67. https://doi.org/10.1007/s11241-021-09367-0

Ronneberger, O., Fischer, P., & Brox, T. (2015). "U-Net: Convolutional Networks for Biomedical Image
Segmentation." In Medical Image Computing and Computer-Assisted Intervention (MICCAI),
Springer, LNCS, Vol. 9351, 234–241. https://doi.org/10.1007/978-3-319-24574-4_28

AMD. (2023). "Vitis AI User Guide." UG1414 (v2.5). https://docs.amd.com/r/en-US/ug1414-vitis-ai

Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., & Garcia-Rodriguez, J. (2017).
"A Review on Deep Learning Techniques Applied to Semantic Segmentation." ArXiv:1704.06857.
https://arxiv.org/abs/1704.06857

Beauchamp, T. L. (2007). "The 'Four Principles' Approach to Health Care Ethics." Principles of
Health Care Ethics, 2nd Edition, John Wiley & Sons, 3-10. https://doi.org/10.1002/9780470510544

8.3 APPENDICES

Appendix A: Detailed Algorithm Division Technical Specifications

https://doi.org/10.1109/TIP.2020.3035721
https://doi.org/10.1109/TIP.2020.3035721
https://docs.xilinx.com/r/en-US/ug1089-kv260-starter-kit
https://docs.xilinx.com/r/en-US/ug1089-kv260-starter-kit
https://doi.org/10.1007/s10439-022-02985-2
https://doi.org/10.1109/MES.2022.3156789
https://doi.org/10.1109/TPDS.2022.3231456
https://doi.org/10.1109/TPDS.2022.3231456
https://doi.org/10.1007/s11241-021-09367-0
https://doi.org/10.1007/978-3-319-24574-4_28
https://docs.amd.com/r/en-US/ug1414-vitis-ai
https://arxiv.org/abs/1704.06857
https://arxiv.org/abs/1704.06857
https://doi.org/10.1002/9780470510544

The algorithm division specifications are detailed in the attached document, which includes:

●​ Mathematical formulation of division points
●​ Layer configurations for each segment
●​ Skip connection handling between segments
●​ Input/output tensor specifications
●​ Weight distribution across segments

Appendix B: Thread Management Implementation Details

The thread management system implements:

●​ Custom synchronization primitives
●​ Memory affinity settings
●​ Thread priority management
●​ Pipeline stage coordination
●​ Error handling and recovery mechanisms

Appendix C: Test Data Sets and Validation Results

The team's test datasets include:

●​ Standard eye tracking benchmark images with ground truth segmentation
●​ Custom dataset with varied lighting conditions
●​ Stress test dataset with rapid movement sequences
●​ Boundary condition test cases
●​ Feature Map testing

Appendix D: Memory Utilization Analysis

Memory analysis includes:

●​ Allocation patterns across DDR banks
●​ Peak usage measurements
●​ Transfer overhead calculations
●​ Optimization opportunities identified

Appendix E: User Calibration Procedure

The calibration procedure details:

●​ Initial setup steps
●​ Baseline establishment process
●​ User-specific parameter adjustment
●​ Validation procedure
●​ Troubleshooting guidelines

9 Team

9.1 TEAM MEMBERS

TYLER SCHAEFER

AIDAN PERRY

CONNER OHNESORGE

JOSEPH METZEN

9.2 REQUIRED SKILL SETS FOR YOUR PROJECT

Neural Network Architecture Knowledge (Requirements 1, 2)

Parallel Computing Experience (Requirements 1, 3)

FPGA Programming Skills (Requirements 2, 3)

Computer Vision Understanding (Requirements 1, 4)

Thread Management Expertise (Requirements 3, 4)

Memory Optimization Knowledge (Requirements 2, 3)

Docker Container Management (Requirement 3)

Image Processing Expertise (Requirements 1, 4)

Real-time Systems Experience (Requirements 2, 4)

9.3 SKILL SETS COVERED BY THE TEAM

Neural Network Architecture Knowledge: Tyler

Parallel Computing Experience: Tyler, Conner

FPGA Programming Skills: Aidan, Joey

Computer Vision Understanding: Tyler

Thread Management Expertise: Aidan, Conner

Memory Optimization Knowledge: Conner, Joey

Docker Container Management: Conner

Image Processing Expertise: Joey, Tyler

Real-time Systems Experience: Aidan, Joey

9.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

The team has adopted a hybrid Waterfall + Agile project management approach. This provides us
with the structured framework of Waterfall for critical path activities while allowing the flexibility
of Agile for iterative development and testing cycles. This approach is particularly well-suited for
the team's hardware-based project that requires careful planning but also benefits from rapid
iteration on specific components.

9.5 INITIAL PROJECT MANAGEMENT ROLES

Project Manager: Conner Ohnesorge - Responsible for tracking overall progress, coordinating
meetings, and managing client communications

Technical Lead: Tyler Schaefer - Guides technical decisions and ensures design cohesion

Implementation Lead: Aidan Perry - Oversees code implementation and quality

Testing Coordinator: Joey Metzen - Manages test plan development and execution

Documentation Manager: Conner Ohnesorge - Ensures comprehensive documentation

9.6 Team Contract

Team Members:

1) _________Joseph Metzen_____________2) ____________Tyler Schaefer________________

3) _________Aidan Perry______________ 4) ____________Conner Ohnesorge____________

Team Procedures

1.​ Day, time, and location for regular team meetings:
○​ Thursdays at 2:00 PM in TLA Room in Coover
○​ Wednesdays at 6:00 PM via Telegram for virtual check-ins with client

2.​ Preferred method of communication:
○​ Discord for team discussions and quick updates
○​ Email for formal communications with advisor/client
○​ GitHub issue tracker for technical tasks and bugs

3.​ Decision-making policy:
○​ Technical decisions require majority vote with technical lead having tiebreaker
○​ Project direction changes require unanimous agreement

4.​ Procedures for record keeping:
○​ All code commits will have descriptive messages
○​ Documentation will be updated weekly

Participation Expectations

1.​ Expected individual attendance, punctuality, and participation:
○​ All team members must attend scheduled meetings
○​ Maximum 10-minute grace period for tardiness

○​ Absence requires 24-hour notice when possible
2.​ Expected level of responsibility for fulfilling assignments:

○​ Tasks to be completed by agreed deadlines
○​ 48-hour notice required if deadline cannot be met
○​ Code must pass established unit tests before commit

3.​ Expected level of communication with other team members:
○​ Daily check-ins on Discord
○​ Immediate communication of any blockers
○​ Weekly progress updates on assigned tasks

4.​ Expected level of commitment to team decisions and tasks:
○​ All members will support team decisions once finalized
○​ Constructive disagreement encouraged during decision process
○​ Personal preferences secondary to project requirements

Leadership

1.​ Leadership roles:
○​ Tyler: Algorithm division and mathematical validation
○​ Aidan: Threading implementation and synchronization
○​ Conner: Environment configuration and documentation
○​ Joey: Hardware interface and memory management

2.​ Strategies for supporting and guiding the work:
○​ Regular code reviews with constructive feedback
○​ Pair programming for complex implementation tasks
○​ Knowledge sharing sessions for specialized topics

3.​ Strategies for recognizing contributions:
○​ Acknowledgment of accomplishments in team meetings
○​ Proper attribution in documentation and presentations
○​ Equal speaking time during client presentations

Collaboration and Inclusion

1.​ Team member skills and expertise:
○​ Tyler: Strong mathematical background, algorithm optimization
○​ Aidan: Thread programming, FPGA experience
○​ Conner: Docker containerization, documentation expertise
○​ Joey: Hardware debugging, memory management, testing

2.​ Strategies for encouraging contributions:
○​ Rotating meeting facilitation roles
○​ Explicit invitation for input from quieter members
○​ Recognition of diverse problem-solving approaches

3.​ Procedures for identifying collaboration issues:
○​ Anonymous feedback mechanism via online form
○​ Regular retrospective meetings to discuss process improvements
○​ Direct communication with project manager for serious concerns

Goal-Setting, Planning, and Execution

1.​ Team goals for this semester:
○​ Complete mathematical division by Week 8
○​ Implement thread management by Week 12
○​ Achieve 50% of target performance improvement by Week 16

2.​ Strategies for planning and assigning work:
○​ Task assignment based on skill match and workload balance
○​ Weekly sprint planning with clear deliverables
○​ Regular progress tracking against milestones

3.​ Strategies for keeping on task:
○​ Weekly progress updates with task burndown charts
○​ Peer accountability partnerships
○​ Regular demos of implemented functionality

Consequences for Not Adhering to Team Contract

1.​ Handling infractions:
○​ First occurrence: Private conversation with team member
○​ Second occurrence: Discussion in team meeting
○​ Persistent issues: Consultation with faculty advisor

2.​ Addressing continued infractions:
○​ Redistribution of workload if necessary
○​ Revision of responsibilities based on demonstrated reliability
○​ In extreme cases, formal notification to course instructor

a) I participated in formulating the standards, roles, and procedures as stated in this contract.

b) I understand that I am obligated to abide by these terms and conditions.

c) I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) __Joseph Metzen________________ _____________________ DATE _____4/29/2025____

2) _ Aidan Perry_____________________________________ ___DATE _____4/29/2025____

3) _ Tyler Schaefer________________________________ ______ DATE _____4/29/2025____

4) _Conner Ohnesorge___________________________________DATE _____4/29/2025____

	1. Introduction
	1.1.​PROBLEM STATEMENT
	1.2.​INTENDED USERS
	PRIMARY CLIENTS
	CLIENT 2: CAREGIVERS AND FAMILY MEMBERS
	CLIENT 3: THE TERTIARY USER GROUP

	2.​Requirements, Constraints, And Standards
	2.1.​REQUIREMENTS & CONSTRAINTS
	Functional Requirements

	USER INTERFACE (UI) REQUIREMENTS
	PHYSICAL AND ECONOMIC REQUIREMENTS
	SYSTEM CONSTRAINTS
	ADDITIONAL CONSIDERATIONS
	2.2 ENGINEERING STANDARDS

	3 Project Plan
	3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES
	3.2 TASK DECOMPOSITION
	Task 2: Implementation of Core Components
	Task 3: Thread Management
	Task 4: Multicore Processing
	Task 5: Integration and Testing
	Task 6: Documentation and Delivery

	3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA
	Milestone 1: Mathematical Division of the Algorithm
	Milestone 3: Thread Testing with Matrix Operations
	Milestone 4: Docker Environment Configuration
	Milestone 5: Pipelined Implementation of Semantic Segmentation
	Milestone 6: Increased Throughput Demonstration

	3.4 PROJECT TIMELINE/SCHEDULE
	3.5 RISKS AND RISK MANAGEMENT/MITIGATION
	Risk 1: Completion Delays
	Risk 2: Hardware Damage
	Risk 3: Data Security
	Risk 4: Algorithm Complexity
	Risk 5: Parallelism Implementation Challenges
	Risk 6: Image Processing Speed Limitations

	3.6 PERSONNEL EFFORT REQUIREMENTS
	3.7 OTHER RESOURCE REQUIREMENTS
	Hardware Resources
	Software Resources
	Development Tools
	Data Resources

	4.1 DESIGN CONTEXT
	4.1.1 Broader Context
	
	4.1.2 Prior Work/Solutions
	4.1.3 Technical Complexity

	4.2 DESIGN EXPLORATION
	4.2.1 Design Decisions
	4.2.2 Ideation
	4.2.3 Decision-Making and Trade-Off

	4.3​PROPOSED DESIGN
	4.3.1 OVERVIEW
	4.3.2 DETAILED DESIGN AND VISUAL(S)
	Hardware Platform
	Software Components
	Processing Pipeline
	Memory Allocation

	4.3.3 FUNCTIONALITY
	Initial Setup:
	Normal Operation:
	Response to Detected Issues:
	User Control Mode:

	4.3.4 AREAS OF CONCERN AND DEVELOPMENT
	4.4 TECHNOLOGY CONSIDERATIONS
	Kria Board KV260
	U-net Semantic Segmentation Algorithm
	Vitis-AI and ONNX-Runtime
	Alternative Technologies Considered

	4.5 DESIGN ANALYSIS
	Current Implementation Status:
	Implementation Challenges:
	Future Implementation Plans:

	5 Testing
	Testing Strategy Overview
	Testing Philosophy
	Testing Challenges
	Testing Schedule

	5.1 UNIT TESTING
	Feature Map Testing
	Algorithm Testing
	Thread Testing
	Success Goals

	5.2 INTERFACE TESTING
	Key Interfaces
	Test Cases

	5.3​SYSTEM TESTING
	Test Plan
	Test Measurements

	5.4​REGRESSION TESTING
	Automated Testing
	Monitoring
	Test Schedule

	5.5​ACCEPTANCE TESTING
	Function Tests
	Other Requirements
	Client Involvement

	5.6​USER TESTING
	Proposed Future User Testing Plan
	System Preparation for Future Testing

	5.7​RESULTS
	Current Progress
	Next Steps

	6 Implementation
	Resource Scheduling Implementation
	Thread Coordination Implementation
	DPU Scheduler Implementation
	Current Status
	Next Implementation Steps

	7 Ethics and Professional Responsibility
	7.1​AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS
	7.2 FOUR PRINCIPLES
	7.3 VIRTUES
	Individual Virtues

	8 Closing Material
	8.1 CONCLUSION
	8.2 REFERENCES
	8.3 APPENDICES
	Appendix A: Detailed Algorithm Division Technical Specifications
	Appendix B: Thread Management Implementation Details
	Appendix C: Test Data Sets and Validation Results
	Appendix D: Memory Utilization Analysis
	Appendix E: User Calibration Procedure

	9 Team
	9.1 TEAM MEMBERS
	9.2 REQUIRED SKILL SETS FOR YOUR PROJECT
	9.3 SKILL SETS COVERED BY THE TEAM
	9.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM
	9.5 INITIAL PROJECT MANAGEMENT ROLES
	9.6 Team Contract
	Team Procedures
	Participation Expectations
	Leadership
	Collaboration and Inclusion
	Goal-Setting, Planning, and Execution
	Consequences for Not Adhering to Team Contract

