
sddec25-01 ​
User Testing Plan

1. Identifying Users
​
While our end product aims to serve handicap individuals with underlying conditions, the full
picture of the development of that end product is years away from materializing to start
hands-on testing. Thus, we have chosen that we should focus, for our user testing plan, on the
advisor and future teams that will interact with the system and codebases in the coming years.
2. Testing Objective
Understandable knowledge transfer from team to team and verifiable information that the client
approves of said usage for easy, and verifiable Result and Metrics. After setup of the system,
the advisor should just need to run our validation program included into our petalinux build to
verify and test our results.

-​ Ensure knowledge transfer and system reproducibility across development cycles.​

-​ Validate integration accuracy and algorithm performance benchmarks (e.g., ≥200 FPS).​

-​ Simplify system usability for technically skilled but non-author team members.​

-​ Confirm system adaptability and documentation quality for future extension.

3. Testing Methodology

Testing Approach

Passed on repo will need to be accessible on the hardware and build successfully. From there
on, detailed instructions of how and what to feed the algorithm to visually understand how it
processes and passes information will be essential to future usage.

Selected Testing Methods

●​ Observation
●​ Task Analysis
●​ Prototype Evaluation

4. Test Plan Details

Test Environment

●​ Location: Coover Senior Lab
●​ Equipment needed: Kria Board KV260, Computer

Test Scenarios

1.​ Scenario 1: Benchmark Previous Code
○​ Tasks: Benchmark accuracy of current algorithm making an easily reproducible

result
○​ Success criteria: Single script can be ran to receive the results on a setup system

2.​ Scenario 2: Benchmark Split Up Model
○​ Tasks: Using the benchmarking scripts made in the previous step ensure the

same or better accuracy of the model was achieved.
○​ Success criteria: Comparisons against the previous scenario results.

3.​ Scenario 3: Benchmark Previous Code (On board)
○​ Tasks: Log time of completion for each segment of current implementation.
○​ Success criteria: View the visual logs written to an output file.

4.​ Scenario 4: Benchmark Pipelined Code
○​ Tasks: Log time of completion for each segment of proposed implementation.
○​ Success criteria: View and compare the visual logs written to another output file.

5. Data Collection

Metrics to Capture

●​ Quantitative Metrics:
○​ Time to completely setup the system
○​ FPS throughput
○​ Accuracy/error rate

●​ Qualitative Feedback:
○​ Suggestions for Improvement

Measurement Tools

●​ Accurate logging for reporting time of completion of each segment in the compared
algorithms.

●​ Benchmarking scripts for performance.

CPU Usage Monitoring Tools

●​ Mpstat (sysstat): Part of the sysstat collection of tools, mpstat reports per-CPU usage
statistics, including user/system time and idle time for each core. The sysstat suite is a
collection of performance monitoring tools for Linux (xilinx wiki). Using mpstat or the
broader sar utility, we can measure CPU utilization on each A53 core over time. sar
can record CPU metrics periodically to log files for later analysis.​

●​ Xilinx System Debugger (XSDB) and Vitis Profiling (GUI): For more advanced CPU
profiling, Xilinx’s Vitis IDE provides profiling tools that can connect to a running
PetaLinux system (via JTAG). These allow function-level profiling and timeline analysis
by instrumenting code or using hardware Performance Monitoring Unit (PMU) counters.
In the Vitis analyzer (formerly SDK System Performance Analysis), we can trace function
execution times and CPU usage over time on a timeline.

Memory Usage Monitoring Tools

●​ Free and VMStat: The free command (often built into BusyBox) provides a snapshot of
total memory, used, free, buffers/caches, and swap. It’s useful for a quick check of
memory consumption. For more detail, vmstat (virtual memory statistics) shows a
running summary of processes, memory, swap, I/O, and CPU in columns (linuxjournal
monitoring tools). vmstat can update repeatedly (e.g., vmstat 1 for per-second stats)
to show how memory usage changes, and includes columns for swap in/out and memory
paging which are crucial on memory-constrained systems.included via procps or
util-linux.

Latency and Real-Time Performance Analysis Tools

●​ Ftrace (Built-in Kernel Tracer) and Trace-cmd: For deep analysis of system behavior
and latencies, Linux’s ftrace framework is invaluable. It can trace function calls,
interrupts, scheduler events, and more with very fine granularity. Using ftrace directly
means writing to files in /sys/kernel/debug/tracing. Can record scheduling
events (trace-cmd record -e sched_switch), IRQ events, function execution
times, and even generate per-CPU timelines.​

●​ Perf (Linux Performance Counters): perf is a Linux profiling tool that can also trace
events and measure latency to some extent. It uses hardware PMU counters and
software events to profile the system. Perf is part of the kernel source (the perf utility
can be built for the target). Sample CPU performance events (cycles, cache misses,
branch misses, etc.), and also record software events like context switches or page
faults (redhat per vs gprof). With perf sched timehist or perf sched record,
we can get scheduler latency insights.​

https://xilinx-wiki.atlassian.net/wiki/pages/viewpage.action?pageId=2615869494&navigatingVersions=true#:~:text=,performance%20monitoring%20tools%20for%20Linux
https://www.linuxjournal.com/content/linux-performance-monitoring-using-tools-top-vmstat-and-iostat#:~:text=The%20
https://www.linuxjournal.com/content/linux-performance-monitoring-using-tools-top-vmstat-and-iostat#:~:text=The%20
https://www.redhat.com/en/blog/perf-vs-gprofng#:~:text=The%20perf%20tool%20is%20a,line%20interface

Graphical Tools

While many embedded systems rely on command-line tools, there are GUI or network-based
monitoring solutions that can be used with PetaLinux for a more user-friendly overview,
especially during development or testing:

●​ SNMP Tools: PetaLinux includes net-snmp in its package list (xilinx-wiki package
groups), meaning the device can run an SNMP daemon. This allows exposing CPU load,
memory, interface stats, etc., via SNMP protocol to any standard monitoring system
(Nagios, Zabbix, custom scripts, etc.). Industry-standard protocol for monitoring; good if
integrating the Zynq device into a larger IT infrastructure monitoring. Integration: Add
and configure snmpd on the device with the desired MIBs.

●​ GUI on Target (X11 based): In cases where the Zynq device has a display (for example,
a Zynq MPSoC running PetaLinux with GUI stack), standard Linux GUI system monitors
will be used. These provide graphical views of CPU and memory usage and process
lists. Features: User-friendly visuals, graphs of CPU/memory over time, point-and-click
interface. Integration: This requires a full OS image with GUI libraries leveraging X11.
The tooling is already built into the petalinux configuration for our board.

Tool /
Package

Metrics Covered Interface Use Case

Dstat (dool) Combined stats:
CPU, memory,
disk, network, etc.
in one view

CLI (interactive
streaming)

Real-time multi-resource
monitoring during tuning or
testing

Perf (Linux
perf)

CPU performance
counters, event
sampling,
software events
(e.g. context
switches)

CLI (commands with
text output)

Profiling CPU and code
performance; finding
bottlenecks, measuring event
counts (cache misses,
interrupts, etc.)

https://xilinx-wiki.atlassian.net/wiki/pages/viewpage.action?pageId=2615869494&navigatingVersions=true#:~:text=%2A%20net,the%20Simple%20Network%20Management%20Protocol
https://xilinx-wiki.atlassian.net/wiki/pages/viewpage.action?pageId=2615869494&navigatingVersions=true#:~:text=%2A%20net,the%20Simple%20Network%20Management%20Protocol

Ftrace &
Trace-cmd

Kernel function
traces, scheduler
and interrupt
latency, event
timelines

CLI (trace-cmd for
capture); GUI
(KernelShark viewer)

In-depth analysis of latency and
timing at kernel level; debugging
real-time performance issues by
tracing execution.

Vitis
Analyzer
(Xilinx)

Function
execution times,
software trace
(via
instrumentation or
PMU)

GUI (on host PC) Profiling software on Zynq
MPSoC during development;
identify hotspots to optimize or
offload. (Development-time tool)

Table: Comparison of performance observability tools, metrics, interfaces, and typical use cases
on PetaLinux (Zynq UltraScale+).

6. Evaluation Criteria

Success Metrics

●​ As one develops and theorizes an input it should try to solve a matrix, as the cv::mat
class that handles input takes a frame and formats it as that of a matrix. Thus, the user
should be able to understand their own matrix and how it is solved. Success will depend
on if the matrix is solved correctly, but also if the user themself fed the input correctly.

7. Testing Schedule
Activity Date Duration Responsible Person

Splitting up
Model

4/29/2025 1-2 Weeks Tyler

Multi
Threading

5/1/2025 2 months
(before and after
summer)

Aidan

Benchmarking 4/9/2025 (Previous Team
Code to our
Code)

Joey and Conner

8. Resources Required
●​ Personnel:

Joseph Metzen – Kria Board Manager

Tyler Schaefer – ML Algorithm Analyst

Conner Ohnesorge– ML Integration HWE

Aidan Perry – Multithreaded Program Developer

●​ Equipment: Kria Kv260 board

9. Reporting Plan
●​ Format of results: Google Docs and Repo
●​ Audience: JR
●​ Timeline: Two Months before the completion of CPRE492 to enable for future team

onboarding.

10. Ethical Considerations

●​ Privacy: JR and members collects all the data​

●​ Consent: Advisor and participants will receive a consent form​

●​ Recording: Any screen recording will be anonymized​

●​ Compensation: voluntary participation

	sddec25-01 ​User Testing Plan
	1. Identifying Users
	2. Testing Objective
	3. Testing Methodology
	Testing Approach
	Selected Testing Methods

	4. Test Plan Details
	Test Environment
	Test Scenarios

	5. Data Collection
	Metrics to Capture
	Measurement Tools
	CPU Usage Monitoring Tools
	Memory Usage Monitoring Tools
	Latency and Real-Time Performance Analysis Tools
	Graphical Tools

	6. Evaluation Criteria
	Success Metrics

	7. Testing Schedule
	8. Resources Required
	9. Reporting Plan
	10. Ethical Considerations

